Ετικέτες

Σάββατο 14 Απριλίου 2018

Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation

Publication date: Available online 13 April 2018
Source:Acta Biomaterialia
Author(s): Taotao Xiong, Xianglian Li, Yanfang Zhou, Qianqian Song, Renshu Zhang, Lei Lei, Xingyi Li
Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but it displays a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We report here an intravitreally injectable thermosensitive glycosylated TA (TA-SA-Glu) hydrogel, formed by covalently conjugating glucosamine (Glu) with succinate TA (TA-SA), for treating uveitis. The TA-SA-Glu hydrogelator forms a supramolecular hydrogel spontaneously in aqueous solution with a minimal gelation concentration of 0.25 wt%. Structural analysis revealed that hydrogen bonds assisted by hydrophobic interaction resulted in self-assembled nanofibers. Rheology analysis demonstrated that this TA-SA-Glu hydrogel exhibited a typical thixotropic property. Sustained release of both TA-SA-Glu and TA from the hydrogel occurred throughout the 3-day in vitro release study. The obtained TA-SA-Glu hardly caused cytotoxicity against ARPE-19 and RAW264.7 cells after 24h of incubation at drug concentration up to 600μM. In particular, TA-SA-Glu exhibited a comparable anti-inflammatory efficacy to TA in terms of inhibiting the production of nitric oxide, tumor necrosis factor-α, and interleukin-6 in activated RAW264.7 macrophages. Following a single intravitreal injection, 69nmol TA-SA-Glu hydrogel caused minimal apparent retinal toxicity, whereas the TA suspension displayed significant effects in terms of localized retinal toxicity. A single intravitreal injection of TA-SA-Glu hydrogel was more effective in controlling inflammatory response than that of the TA suspension treatment, particularly in down-regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis. This study strongly indicates that supramolecular TA-SA-Glu hydrogels may represent a new option for posterior uveitis management.Statement of significanceIntravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but suffers a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We generated an injectable glycosylated triamcinolone acetonide hydrogelator (TA-SA-Glu) hydrogel for treating uveitis. Following a single intravitreal injection, the proposed TA-SA-Glu hydrogel hardly caused apparent retinal toxicity at a dosage of 69nmol per eye. Furthermore, TA-SA-Glu hydrogel was more effective in controlling non-infectious uveitis over than a TA suspension, particularly in terms of down-regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis (EAU). This study strongly indicates that TA-SA-Glu supramolecular hydrogels may represent a new option for the management of various intraocular inflammations.

Graphical abstract

image


https://ift.tt/2GX0wNC

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου