Publication date: Available online 26 April 2018
Source:Artificial Intelligence in Medicine
Author(s): Ziba Gandomkar, Patrick C. Brennan, Claudia Mello-Thoms
MotivationIdentifying carcinoma subtype can help to select appropriate treatment options and determining the subtype of benign lesions can be beneficial to estimate the patients' risk of developing cancer in the future. Pathologists' assessment of lesion subtypes is considered as the gold standard, however, sometimes strong disagreements among pathologists for distinction among lesion subtypes have been previously reported in the literature.ObjectiveTo propose a framework for classifying hematoxylin-eosin stained breast digital slides either as benign or cancer, and then categorizing cancer and benign cases into four different subtypes each.Materials and methodsWe used data from a publicly available database (BreakHis) of 81 patients where each patient had images at four magnification factors (×40, ×100, ×200, and ×400) available, for a total of 7786 images. The proposed framework, called MuDeRN (MUlti-category classification of breast histopathological image using DEep Residual Networks) consisted of two stages. In the first stage, for each magnification factor, a deep residual network (ResNet) with 152 layers has been trained for classifying patches from the images as benign or malignant. In the next stage, the images classified as malignant were subdivided into four cancer subcategories and those categorized as benign were classified into four subtypes. Finally, the diagnosis for each patient was made by combining outputs of ResNets' processed images in different magnification factors using a meta-decision tree.ResultsFor the malignant/benign classification of images, MuDeRN's first stage achieved correct classification rates (CCR) of 98.52%, 97.90%, 98.33%, and 97.66% in ×40, ×100, ×200, and ×400 magnification factors respectively. For eight-class categorization of images based on the output of MuDeRN's both stages, CCRs in four magnification factors were 95.40%, 94.90%, 95.70%, and 94.60%. Finally, for making patient-level diagnosis, MuDeRN achieved a CCR of 96.25% for eight-class categorization.ConclusionsMuDeRN can be helpful in the categorization of breast lesions.
https://ift.tt/2vRtEk7
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Πέμπτη 26 Απριλίου 2018
MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου