Abstract
Sulfur extraction from fuel is essential to be done for environmental and industrial point of view. Extractive desulfurization (EDS) is one of the most promising techniques in order to achieve legislative sulfur content requirements. Among numerous extractants and solvents, ionic liquids (ILs) are more capable due to their desirable green solvent properties. This work demonstrated that trihexyl(tetradecyl)phosphonium tetrafluoroborate ([THTDP]BF4) was synthesized, characterized, and employed as extraction solvent for extraction of dibenzothiophene (DBT), thiophene, benzothiophene, and other alkyl-substituted derivatives of sulfur from liquid fuel. Molecular confirmation and purity of synthesized ([THTDP]BF4) were analyzed with FTIR, Raman, NMR, EPR, UV, TG/DSC, and XRD analyses. Also, physical properties of ([THTDP]BF4) were carried out. The effects of extraction time, temperature, sulfur compounds, ultra-sonication, and ([THTDP]BF4) recycling/regeneration on DBT removal from liquid fuel were also examined. DBT removal in n-dodecane was 92.6% using EDS with mass ratio (1:1) in 30 min at 30 °C under the mild reaction conditions. ([THTDP]BF4) could be reused up to ten cycles for sulfur extraction and regenerated for few more cycles with good DBT removal ability. Also, the sulfur extraction from real fuels and multistage extraction performance were tested. The experimental data and results provided in this article discover the remarkable understandings of tetrafluoroborate-based phosphonium ionic liquids as promising solvent for EDS.
https://ift.tt/2IPzRyX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου