Ετικέτες

Σάββατο 2 Ιουνίου 2018

Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust

Abstract

Continuous addition of undesired effluents to the environment affects foliar surface of leaf, changes their morphology, stomata, photosynthetic pigments, and biochemical constituents which result in massive damage due to persistent nature of the pollutant. In persistent hostile environment, plants fail to grow and develop, and the effects are often extensive. In current study, landscape plants were exposed to different levels of road dust to analyze the effect on various photosynthetic pigments. Dry roadside sediments were collected through a vacuum pump and passed through filters to get fine particles less than 100 μm and sprinkled on Euphorbia milii (EM), Gardenia jasminoides (GJ), and Hibiscus rosa-sinensis (HRs) by using a hand pump, twice daily at T1 (control), T2, T3, and T4 (0, 2, 4, and 6 g/plant, respectively) for a period of 3 months in green house. Road sediment significantly reduces leaf pigments in landscape plants population and the effects were more severe in high level of dust deposition. Individual response of EM, GJ, and HRs to different levels of road dust was variable; however, road sediment significantly reduces leaf pigments at high dose of roadside dust deposition. EM plants exposed to 2 g/plant roadside dust showed higher chlorophyll-a, chlorophyll-b, total chlorophyll, chlorophyllide-b, and polar carotenoid contents as compared to GJ and HRs. Leaf chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and polar carotenoid contents of EM were higher than GJ and HRs in T3 and T4 treatments. However HRs showed significantly higher protochlorophyllide, chlorophyllide-a, and pheophytin-b contents of leaf in T4 group. EM was found as tolerant landscape plant followed by HRs. GJ was most vulnerable to road dust stress. Present study concludes that the entire biosynthesis of leaf pigments is in chain and interlinked together where effect of road dust on one pigment influences other pigments and their derivatives. Salient features of the present study provide useful evidence to estimate roadside dust as a major risk factor for plant pigments, and plants in green belt along roadside suffer retarded growth and fail to establish and develop.



https://ift.tt/2J4VQ9F

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου