Ετικέτες

Τρίτη 19 Ιουνίου 2018

Longitudinal serum S100β and brain aging in the Lothian Birth Cohort 1936

Publication date: September 2018
Source:Neurobiology of Aging, Volume 69
Author(s): Simon R. Cox, Mike Allerhand, Stuart J. Ritchie, Susana Muñoz Maniega, Maria Valdés Hernández, Sarah E. Harris, David Alexander Dickie, Devasuda Anblagan, Benjamin S. Aribisala, Zoe Morris, Roy Sherwood, N. Joan Abbott, John M. Starr, Mark E. Bastin, Joanna M. Wardlaw, Ian J. Deary
Elevated serum and cerebrospinal fluid concentrations of S100β, a protein predominantly found in glia, are associated with intracranial injury and neurodegeneration, although concentrations are also influenced by several other factors. The longitudinal association between serum S100β concentrations and brain health in nonpathological aging is unknown. In a large group (baseline N = 593; longitudinal N = 414) of community-dwelling older adults at ages 73 and 76 years, we examined cross-sectional and parallel longitudinal changes between serum S100β and brain MRI parameters: white matter hyperintensities, perivascular space visibility, white matter fractional anisotropy and mean diffusivity (MD), global atrophy, and gray matter volume. Using bivariate change score structural equation models, correcting for age, sex, diabetes, and hypertension, higher S100β was cross-sectionally associated with poorer general fractional anisotropy (r = −0.150, p = 0.001), which was strongest in the anterior thalamic (r = −0.155, p < 0.001) and cingulum bundles (r = −0.111, p = 0.005), and survived false discovery rate correction. Longitudinally, there were no significant associations between changes in brain imaging parameters and S100β after false discovery rate correction. These data provide some weak evidence that S100β may be an informative biomarker of brain white matter aging.



https://ift.tt/2t9HhHI

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου