Publication date: September 2018
Source:Biomaterials, Volume 177
Author(s): Yang Zhu, Yasumoto Matsumura, Murugesan Velayutham, Lesley M. Foley, T. Kevin Hitchens, William R. Wagner
Tissue damage and the impairment of regenerative processes by excessive reactive oxygen species (ROS) contributes to the pathogenesis of various diseases in soft tissues including diabetes, atherosclerosis, Parkinson's disease and myocardial ischemic/reperfusion injury. In this study, a thermally responsive injectable hydrogel poly(NIPAAm-co-VP-co-MAPLA-co-MATEMPO) (pNVMT, NIPAAm: N-isopropylacrylamide, VP: vinylpyrrolidone, MAPLA: methacrylate-polylactide, MATEMPO: methacrylate-TEMPO, TEMPO: 4-amino-TEMPO or 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl) incorporating recyclable ROS scavenging nitroxide radicals on the polymer backbone was developed to locally control adverse tissue effects from free radical generation. In an in vitro oxidative environment, TEMPO Gel significantly preserved cell viability. In a rat myocardial infarction/reperfusion model, TEMPO Gel diffused through the infarcted myocardium, integrated with the tissue upon gelation, and remained for over one week as visualized by MRI. The TEMPO Gel reduced infarction/reperfusion injury and preserved left ventricle geometry. This thermally responsive hydrogel was demonstrated to have properties desirable for local application to soft tissue beds where oxidative damage by ROS is of concern in pathological mechanisms.
https://ift.tt/2sGNUBa
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου