Ετικέτες

Τρίτη 5 Ιουνίου 2018

Structure-function study of Poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives

Publication date: Available online 4 June 2018
Source:Acta Biomaterialia
Author(s): Chen-Jung Lee, Huifang Wang, Megan Young, Shengxi Li, Fang Cheng, Hongbo Cong, Gang Cheng
Poly(3,4-ethylenedioxythiophene) (PEDOT) has been widely studied in recent decades due to its high stability, biocompatibility, low redox potential, moderate band gap, and optical transparency in its conducting state. However, for its long-term in vivo applications, the biocompatibility of PEDOT still need to be improved. To address this challenge, zwitterionic Poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) that contains EDOT backbone with sulfobetaine functional side chains were developed in our previous study. Although PSBEDOT showed great resistance to proteins, cells, and bacteria, it is still not clear how the zwitterionic sulfobetaine side chain affects the electrochemical properties of the polymer and reactivity of the monomer. To have better understanding on the structure-function relationship of zwitterionic conducting polymer, we synthesized two derivatives of PSBEDOT, PSBEDOT-4 and PSBEDOT-5, by introducing the alkoxyl spacer between EDOT and sulfobetaine. The interfacial impedance of PSBEDOT-4 and PSBEDOT-5 was examined by electrochemical impedance spectroscopy and showed significant improvement which is about 20 times lower than PSBEDOT on both gold and indium tin oxide substrates at 1 Hz. In the protein adsorption test, PSBEDOT, PSBEDOT-4 and PSBEDOT-5 exhibited comparable resistance to the fibrinogen solution. All three polymers had low protein adsorption around 3%-5% comparing to the control sample, PEDOT, which was normalized to 100%. Additionally, the morphology of PSBEDOT, PSBEDOT-4 and PSBEDOT-5 with different synthesis parameter have been investigated by scanning electron microscope. We believe that these stable and biocompatible materials can be good candidates for developing long-term bioelectronics devices.Statement of significanceTo address the challenges associated existing conducting materials for bioelectronics, we developed a versatile and high performance zwitterionic conducting material platform with excellent stability, electrochemical, antifouling and controllable antimicrobial/antifouling properties. In this work, we developed two high-performance conducting polymers and systematically investigated how its structure affect their properties. Our study shows we can accurately tune the molecular structure of the monomer to dramatically improve the performance of zwitterionic conducting polymer. This zwitterionic conducting polymer platform may dramatically increase the performance and service life of electrochemical devices for many long-term applications, such as implantable biosensing, tissue engineering, wound healing, robotic prostheses, biofuel cell etc., which all require high performance conducting materials with excellent antifouling/biocompatibility at complex biointerfaces.

Graphical abstract

image


https://ift.tt/2LYIuJH

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου