Abstract
A raw illite-smectite mixed-layered clay (RI/S) was ground for preparing nano-sized I/S clay (NI/S) and subsequently amino-functionalized via grafting of 3-aminopropyltrithoxysilane (APTES) (NH2-RI/S and NH2-NI/S, respectively). The samples were characterized by particle size analysis, specific surface area measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and 29Si nuclear magnetic resonance (29Si NMR). Compared to RI/S, NI/S has a narrow particle size distribution and appears in a platelet-like morphology due to the disintegration/exfoliation of RI/S after grinding. Based on the 29Si NMR spectra, the appearances of tri-silicate units indicate the chemically grafting of APTES molecules on NH2-RI/S and NH2-NI/S, respectively. NH2-NI/S can adsorb greater amounts of Pb(II) cations and Cr(VI) anions rather than NH2-RI/S since NH2-NI/S grafts more amounts of amine groups (-NH2). The isotherm data for adsorption of Pb(II) cations and Cr(VI) anions can be described by the Langmuir model at different temperatures (i.e., 10 °C, 30 °C, and 50 °C), respectively. The maximum adsorption amounts of Pb(II) cations and Cr(VI) anions onto NH2-NI/S calculated by the Langmuir isotherm model are 131.23 mg/g and 36.91 mg/g at 50 °C, respectively. The adsorptions of Pb(II) cations and Cr(VI) anions onto NH2-NI/S involve in the surface complexation of NI/S and amine groups.
https://ift.tt/2T7tcIV
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου