Abstract
Anaerobic digestion (AD) is an attractive technology for sludge treatment as it stabilizes sludge and produce renewable energy. However, problems such as low organic matter content and high heavy metals level are often encountered which severely limits the effectiveness of AD. In this study, the biochar-supported nanoscale zerovalent iron (nZVI-BC) was synthesized and used as additives during AD of sewage sludge to investigate the enhancement effects for methane production and its impacts on microbial structure at mesophilic temperature. nZVI-BC addition enhanced process stability by improving the generation and degradation of intermediate organic acids, but inhibitory effects were observed at high dosage. The methane content and cumulative methane yields were increased by 29.56% and 115.39%, respectively. Compared with AD without nZVI-BC, the application of nZVI-BC showed positive effect on improvement of metals (Cu, Cd, Ni, Cr, and Zn) stabilization in the digestate. Microbial community analysis illustrated that nZVI-BC addition could significantly increase the Shannon diversity index and Chao1 richness index of archaea, and meanwhile archaea were more diverse in nZVI-BC amended digesters than in control. It was notable that Methanosaeta dominated in all the digesters at genera level, while the relative abundance of hydrogenotrophic methanogens (Methanobacterium and methanospirillum) increased 35.39% in nZVI-BC amended digesters compared to the control, resulting in higher methane production. The results will guide development of microbial management methods to enhance the stability of AD process.
http://bit.ly/2BJUn2T
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου