<span class="paragraphSection"><div class="boxTitle">Abstract</div>Anatomical studies have shown that the majority of callosal axons are glutamatergic. However, a small proportion of callosal axons are also immunoreactive for glutamic acid decarboxylase, an enzyme required for gamma-aminobutyric acid (GABA) synthesis and a specific marker for GABAergic neurons. Here, we test the hypothesis that corticocortical parvalbumin-expressing (CC-Parv) neurons connect the two hemispheres of multiple cortical areas, project through the corpus callosum, and are a functional part of the local cortical circuit. Our investigation of this hypothesis takes advantage of viral tracing and optogenetics to determine the anatomical and electrophysiological properties of CC-Parv neurons of the mouse auditory, visual, and motor cortices. We found a direct inhibitory pathway made up of parvalbumin-expressing (Parv) neurons which connects corresponding cortical areas (CC-Parv neurons → contralateral cortex). Like other Parv cortical neurons, these neurons provide local inhibition onto nearby pyramidal neurons and receive thalamocortical input. These results demonstrate a previously unknown long-range inhibitory circuit arising from a genetically defined type of GABAergic neuron that is engaged in interhemispheric communication.</span>
http://ift.tt/2kqzhy7
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Τετάρτη 8 Φεβρουαρίου 2017
Cortical Circuits of Callosal GABAergic Neurons
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου