Ετικέτες

Τρίτη 28 Μαρτίου 2017

Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates

Publication date: 1 July 2017
Source:Talanta, Volume 169
Author(s): Samar Alsudir, Edward P.C. Lai
The UV detection sensitivity of ZnO nanoparticles in capillary electrophoresis (CE) analysis was selectively enhanced, by 27 or 19 folds, after adsorption of dithiothreitol (DTT) or cysteine (Cys) in 10mM sodium phosphate buffer. Adsorption equilibrium was reached within 90min for DTT but only 10min for Cys. The adsorption process was best modeled by the Langmuir isotherm, indicating the formation of a monolayer of DTT or Cys on the surface of ZnO nanoparticles. The selectivity of DTT and Cys towards ZnO nanoparticles was tested using alumina (Al2O3), ceria (CeO2), silica (SiO2) and titania (TiO2) nanoparticles. No changes in the CE-UV peak area of either adsorbates or nanoparticles were observed, indicating a lack of adsorption. Dynamic light scattering (DLS) provided similar evidence of the selectivity of both adsorbates towards ZnO. Cys also improved the colloidal stability of ZnO nanoparticles by breaking down the aggregates, as evidenced by a reduction of their average hydrodynamic diameter. This new analytical approach provides a simple and rapid methodology to detect ZnO nanoparticles selectively by CE-UV analysis with enhanced sensitivity.

Graphical abstract

image


http://ift.tt/2odcdTi

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου