Ετικέτες

Παρασκευή 28 Ιουλίου 2017

Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors

alertIcon.gif

Publication date: Available online 27 July 2017
Source:The Journal of Prosthetic Dentistry
Author(s): Domingo Santos Pantaleón, Brian R. Morrow, David R. Cagna, Cornelis H. Pameijer, Franklin Garcia-Godoy
Statement of problemLimited information is available on the effect of an incomplete ferrule because of the varying residual axial wall heights and the volume of residual tooth structure on the fracture resistance of endodontically treated and restored maxillary incisors.PurposeThe purpose of this in vitro investigation was to examine the effect of varying residual axial wall heights, residual coronal tooth structure, and the absence of 1 proximal axial wall on the fracture resistance and failure mode of endodontically treated teeth restored with metal posts.Material and methodsSixty intact human maxillary central incisors were divided into 6 groups (n=10): no ferrule (NF), 2-mm complete ferrule (CF2), 2-mm (IF2), 3-mm (IF3), and 4-mm (IF4) incomplete ferrules missing a single interproximal wall, and a control group that had a 6-mm incomplete ferrule (IF6). Cast metal post-and-cores were placed in all experimental specimens except for controls. Control specimens received 1 interproximal cavity preparation extending to the root canal access and a composite resin restoration. Complete metal crowns were then cemented on all specimens. Completed specimens were subjected to thermocycling (6000 cycles, 5°C/55°C) followed by the immediate testing of fracture resistance. Failed specimens were sectioned buccolingually and evaluated to identify the failure mode. The data were analyzed with an analysis of variance (ANOVA) and the Student-Newman-Keuls multiple comparison test (α=.05).ResultsAn incomplete ferrule (IF2) with 1 interproximal wall missing had significantly reduced fracture resistance (697 N) compared with a complete ferrule (932 N). An increase of 3 to 4 mm of remaining wall height improved fracture resistance, from 844 N (IF3) to 853 N (IF4). Partial decementation was noticed in 8 NF and 5 IF2 specimens. IF3 and IF4 had no decementations. Radicular fractures and cracks (catastrophic failure) were observed in all IF2, IF3, and IF4, 9 CF2, and 6 NF specimens. In 7 specimens without posts (IF6, control), composite resin foundation and/or coronal dentin fracture were observed and the failure was considered repairable.ConclusionsThe results of this in vitro study indicated that specimens with a 2-mm ferrule of uniform height were more resistant to fracture than specimens with a 2-mm ferrule and 1 missing interproximal wall. An increased wall height of 3 or 4 mm was associated with a significant increase in fracture resistance and can compensate for the missing interproximal wall.



http://ift.tt/2tQQarV

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου