Ετικέτες

Σάββατο 29 Ιουλίου 2017

Inhibition of Rad51 sensitizes breast cancer cells with wild-type PTEN to olaparib

Publication date: October 2017
Source:Biomedicine & Pharmacotherapy, Volume 94
Author(s): Qian Zhao, Jiawei Guan, Zhiwei Zhang, Jian Lv, Yulu Wang, Likun Liu, Qi Zhou, Weifeng Mao
PTEN is a tumor suppressor gene well characterized as a phosphatase. However, more evidences demonstrate PTEN functions in DNA repair independent of its phosphatase activity, which affects the efficacy of DNA damage anti-tumoral drugs in treating cancer cells with PTEN variations. Using BT549 breast cancer cells, we studied the roles of PTEN in DNA repair and in sensitization of breast cancer cells to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor. Comet assay showed PTEN promoted DNA repair. PTEN-deficient BT549 cells are sensitive to olaparib, which shows the synthetic lethality between PTEN and PARP1. We expressed PTEN in BT549 cells and found PTEN-proficient BT549 cells resist to olaparib. Western blot showed that PTEN up-regulated Rad51 expression, suggesting PTEN promotes DNA repair through Rad51-dependnent homologous recombination. We used 5μM olaparib or 5μM RI-1, a Rad51 inhibitor, to treat PTEN-proficient BT549 cells respectively. The immunofluorescent analysis showed the combination of olaparib and RI-1 induced more than 4-fold of γH2AX foci than either of them. MTT assay showed 5μM RI-1 did not change the survival of PTEN-proficient BT549 cells, however, this dose of RI-1 sensitized PTEN-proficient BT549 cells to olaparib. Consequently, these results demonstrate that inhibition of Rad51 can sensitize BT549 cells with wild type PTEN to olaparib, which would contribute to using PARP inhibitors in individual treatment of breast cancer patients with PTEN variations.

Graphical abstract

image


http://ift.tt/2tMwOQD

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου