Ετικέτες

Τετάρτη 13 Σεπτεμβρίου 2017

Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

Publication date: 5 December 2017
Source:Materials & Design, Volume 135
Author(s): Ke An, Lang Yuan, Laura Dial, Ian Spinelli, Alexandru D. Stoica, Yan Gao
Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling down were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.

Graphical abstract

image


http://ift.tt/2h2CRPC

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου