Publication date: Available online 20 October 2017
Source:Best Practice & Research Clinical Endocrinology & Metabolism
Author(s): Bodo C. Melnik, Gerd Schmitz
Our perception of milk has changed from a "simple food" to a highly sophisticated maternal–neonatal nutrient and communication system orchestrating early programming of the infant. Milk miRNAs delivered by exosomes and milk fat globules derived from mammary gland epithelial cells play a key role in this process. Exosomes resist the harsh intestinal environment, are taken up by intestinal cells via endocytosis, and reach the systemic circulation of the milk recipient. The most abundant miRNA found in exosomes and milk fat globules of human and cow's milk, miRNA-148a, attenuates the expression of DNA methyltransferase 1, which is critically involved in epigenetic regulation. Another important miRNA of milk, miRNA-125b, targets p53, the guardian of the genome, and its diverse transcriptional network. The deficiency of exosomal miRNAs in infant formula and the persistent uptake of milk miRNAs after the nursing period via consumption of cow's milk are two epigenetic aberrations that may induce adverse long-term effects on human health.
http://ift.tt/2AJdwCS
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου