Ετικέτες

Παρασκευή 8 Δεκεμβρίου 2017

The effects of L-type amino acid transporter 1 on milk protein synthesis in mammary glands of dairy cows

S00220302.gif

Publication date: Available online 8 December 2017
Source:Journal of Dairy Science
Author(s): Ye Lin, Xiaoyu Duan, He Lv, Yang Yang, Ying Liu, Xuejun Gao, Xiaoming Hou
The mammary gland requires the uptake of AA for milk protein synthesis during lactation. The L-type amino acid transporter 1 (LAT1, encoded by SLC7A5), found in many different types of mammalian cells, is indispensable as a transporter of essential AA to maintain cell growth and protein synthesis. However, the function of LAT1 in regulating milk protein synthesis in the mammary gland of the dairy cow remains largely unknown. For the current study, we characterized the relationship between LAT1 expression and milk protein synthesis in lactating dairy cows and investigated whether the mammalian target of rapamycin complex1 (mTORC1) signaling controls the expression of LAT1 in their mammary glands. We found that LAT1 and the heavy chain of its chaperone, 4F2, were expressed in mammary tissues of lactating cows, with the expression levels of LAT1 and the 4F2 heavy chain being significantly greater in lactating mammary tissues with high-milk protein content (milk yield, 33.8 ± 2.1 kg/d; milk protein concentration >3%, wt/vol,; n = 3) than in tissues from cows with low-milk protein content (milk yield, 33.7 ± 0.5 kg/d; milk protein concentration <3%, wt/vol; n = 3). Immunofluorescence staining of sectioned mammary tissues from cows with high and low milk protein content showed that LAT1 was located on the whole plasma membrane of alveolar epithelial cells, suggesting that LAT1 provides essential AA to the mammary gland. In cultured mammary epithelial cells from the dairy cows with high-milk protein content, knockdown of LAT1 expression decreased cell viability and β-casein expression; in contrast, overexpression of LAT1 had the opposite effect. Inhibition of mTORC1 by rapamycin attenuated the phosphorylation of molecules related to mTORC1 signaling and caused a marked decrease in LAT1 expression in the cultured cells; expression of β-casein also decreased significantly. These results suggest that LAT1 is involved in milk protein synthesis in the mammary glands of lactating dairy cows and that the mTORC1 signaling pathway might be a control point for regulation of LAT1 expression, which could ultimately be used to alter milk protein synthesis.



http://ift.tt/2BWF6dj

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου