Publication date: 3 July 2018
Source:Cell Reports, Volume 24, Issue 1
Author(s): Sari Tojkander, Katarzyna Ciuba, Pekka Lappalainen
Stress fibers are contractile actomyosin bundles that guide cell adhesion, migration, and morphogenesis. Their assembly and alignment are under precise mechanosensitive control. Thus, stress fiber networks undergo rapid modification in response to changes in biophysical properties of the cell's surroundings. Stress fiber maturation requires mechanosensitive activation of 5′AMP-activated protein kinase (AMPK), which phosphorylates vasodilator-stimulated phosphoprotein (VASP) to inhibit actin polymerization at focal adhesions. Here, we identify Ca2+-calmodulin-dependent kinase kinase 2 (CaMKK2) as a critical upstream factor controlling mechanosensitive AMPK activation. CaMKK2 and Ca2+ influxes were enriched around focal adhesions at the ends of contractile stress fibers. Inhibition of either CaMKK2 or mechanosensitive Ca2+ channels led to defects in phosphorylation of AMPK and VASP, resulting in a loss of contractile bundles and a decrease in cell-exerted forces. These data provide evidence that Ca2+, CaMKK2, AMPK, and VASP form a mechanosensitive signaling cascade at focal adhesions that is critical for stress fiber assembly.
Graphical abstract
Teaser
Contractile actomyosin bundles control cell morphology, adhesion, and migration. Tojkander et al. show that the maturation of actomyosin bundles occurs through activation of local, mechanosensitive Ca2+ influx that triggers CaMKK2/AMPK-dependent signaling cascade at focal adhesions.https://ift.tt/2lPW1aH
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου