Publication date: Available online 9 February 2017
Source:Free Radical Biology and Medicine
Author(s): Katsuhiko Ono, Minkyung Jung, Tianli Zhang, Hiroyasu Tsutsuki, Hiroshi Sezaki, Hideshi Ihara, Fan-Yan Wei, Kazuhito Tomizawa, Takaaki Akaike, Tomohiro Sawa
Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases—CysE, CysK, and CysM—from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34S-labeled L-cysteine from O-acetyl-L-serine and 34S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur (34S) and nitrogen (15N) atoms was also achieved by performing enzyme reactions with 15N-labeled L-serine, acetyl-CoA, and 34S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34S-labeled N-acetyl-L-cysteine (NAC) by incubating 34S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology.
Graphical abstract
http://ift.tt/2krLsIB
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου