Ετικέτες

Τρίτη 9 Ιανουαρίου 2018

Poly(3,6-diamino-9-ethylcarbazole) based molecularly imprinted polymer sensor for ultra-sensitive and selective detection of 17-β-estradiol in biological fluids

S09565663.gif

Publication date: 1 May 2018
Source:Biosensors and Bioelectronics, Volume 104
Author(s): Weilu Liu, Haifeng Li, Shangmin Yu, Jiaxing Zhang, Weihua Zheng, Liting Niu, Gengen Li
In this work, we reported the synthesis of 3, 6-diamino-9-ethylcarbazole and its application as a new monomer for preparation of molecularly imprinted polymer (MIP) electrochemical sensor. The as prepared MIP sensor exhibited ultrahigh sensitivity and selectivity for the detection of 17-β-estradiol in attomolar levels (1 × 10–18molL−1). The sensor works by detecting the change of the interfacial impedance that is derived from recognition of 17-β-estradiol on the MIP layer. The MIP sensor based on 3, 6-diamino-9-ethylcarbazole monomer revealed better performance than that of unmodified carbazole monomer. The monomer/template ratio, electropolymerization scanning cycles, and the incubation pH values were optimised in order to obtain the best detection efficiency. Under the optimised condition, the MIP sensor exhibits a wide linear range from 1aM to 10μM (1 × 10–18 ̶ 1 × 10−5molL−1). A low detection limit of 0.36aM (3.6 × 10–19molL−1) and a good selectivity towards structurally similar compounds were obtained. The proposed MIP sensor also exhibits long-term stability and applicability in human serum samples. These advantages enabled this MIP sensor to be a promising alternative of electrochemical sensor and may be extended to detection of other endogenous compounds.



http://ift.tt/2mcRoY2

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου