Ετικέτες

Τρίτη 18 Ιουλίου 2017

Genome-wide RNAi Screen for Fat Regulatory Genes in C. elegans Identifies a Proteostasis-AMPK Axis Critical for Starvation Survival

Publication date: 18 July 2017
Source:Cell Reports, Volume 20, Issue 3
Author(s): Christopher M. Webster, Elizabeth C. Pino, Christopher E. Carr, Lianfeng Wu, Ben Zhou, Lucydalila Cedillo, Michael C. Kacergis, Sean P. Curran, Alexander A. Soukas
Organisms must execute metabolic defenses to survive nutrient deprivation. We performed a genome-wide RNAi screen in Caenorhabditis elegans to identify fat regulatory genes indispensable for starvation resistance. Here, we show that opposing proteostasis pathways are principal determinants of starvation survival. Reduced function of cytoplasmic aminoacyl tRNA synthetases (ARS genes) increases fat mass and extends starvation survival, whereas reduced proteasomal function reduces fat and starvation survival. These opposing pathways converge on AMP-activated protein kinase (AMPK) as the critical effector of starvation defenses. Extended starvation survival in ARS deficiency is dependent upon increased proteasome-mediated activation of AMPK. When the proteasome is inhibited, neither starvation nor ARS deficiency can fully activate AMPK, leading to greatly diminished starvation survival. Thus, activity of the proteasome and AMPK are mechanistically linked and highly correlated with starvation resistance. Conversely, aberrant activation of the proteostasis-AMPK axis during nutritional excess may have implications for obesity and cardiometabolic diseases.

Graphical abstract

image

Teaser

Using a genome-wide screen for fat regulatory genes in C. elegans, Webster et al. define a proteostasis-AMPK signaling axis that is central to organismal starvation defenses. The results suggest that enhanced survival under elevated proteasome activity is due to AMPK activation and not to increased fuel availability.


http://ift.tt/2uxZhxt

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου