Ετικέτες

Τρίτη 18 Ιουλίου 2017

On the successful use of a simplified model to simulate the succession of toxic cyanobacteria in a hypereutrophic reservoir with a highly fluctuating water level

Abstract

Many freshwater bodies worldwide that suffer from harmful algal blooms would benefit for their management from a simple ecological model that requires few field data, e.g. for early warning systems. Beyond a certain degree, adding processes to ecological models can reduce model predictive capabilities. In this work, we assess whether a simple ecological model without nutrients is able to describe the succession of cyanobacterial blooms of different species in a hypereutrophic reservoir and help understand the factors that determine these blooms. In our study site, Karaoun Reservoir, Lebanon, cyanobacteria Aphanizomenon ovalisporum and Microcystis aeruginosa alternatively bloom. A simple configuration of the model DYRESM-CAEDYM was used; both cyanobacteria were simulated, with constant vertical migration velocity for A. ovalisporum, with vertical migration velocity dependent on light for M. aeruginosa and with growth limited by light and temperature and not by nutrients for both species. The model was calibrated on two successive years with contrasted bloom patterns and high variations in water level. It was able to reproduce the measurements; it showed a good performance for the water level (root-mean-square error (RMSE) lower than 1 m, annual variation of 25 m), water temperature profiles (RMSE of 0.22–1.41 °C, range 13–28 °C) and cyanobacteria biomass (RMSE of 1–57 μg Chl a L−1, range 0–206 μg Chl a L−1). The model also helped understand the succession of blooms in both years. The model results suggest that the higher growth rate of M. aeruginosa during favourable temperature and light conditions allowed it to outgrow A. ovalisporum. Our results show that simple model configurations can be sufficient not only for theoretical works when few major processes can be identified but also for operational applications. This approach could be transposed on other hypereutrophic lakes and reservoirs to describe the competition between dominant phytoplankton species, contribute to early warning systems or be used for management scenarios.



http://ift.tt/2tmWveL

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου