Publication date: October 2017
Source:Current Opinion in Neurobiology, Volume 46
Author(s): Scott W Linderman, Samuel J Gershman
Computational neuroscience is, to first order, dominated by two approaches: the 'bottom-up' approach, which searches for statistical patterns in large-scale neural recordings, and the 'top-down' approach, which begins with a theory of computation and considers plausible neural implementations. While this division is not clear-cut, we argue that these approaches should be much more intimately linked. From a Bayesian perspective, computational theories provide constrained prior distributions on neural data—albeit highly sophisticated ones. By connecting theory to observation via a probabilistic model, we provide the link necessary to test, evaluate, and revise our theories in a data-driven and statistically rigorous fashion. This review highlights examples of this theory-driven pipeline for neural data analysis in recent literature and illustrates it with a worked example based on the temporal difference learning model of dopamine.
http://ift.tt/2uHdOHF
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου