Abstract
Point-based rigid registration (PBRR) techniques are widely used in many aspects of image-guided surgery (IGS). Accurately estimating target registration error (TRE) statistics is of essential value for medical applications such as optically surgical tool-tip tracking and image registration. For example, knowing the TRE distribution statistics of surgical tool tip can help the surgeon make right decisions during surgery. In the meantime, the pose of a surgical tool is usually reported relative to a second rigid body whose local frame is called coordinate reference frame (CRF). In an n-ocular tracking system, fiducial localization error (FLE) should be considered inhomogeneous, that means FLE is different between fiducials, and anisotropic that indicates FLE is different in all directions. In this paper, we extend the TRE estimation algorithm relative to a CRF from homogeneous and anisotropic to heterogeneous FLE cases. Arbitrary weightings can be assumed in solving the registration problems in the proposed TRE estimation algorithm. Monte Carlo simulation results demonstrate the proposed algorithm’s effectiveness for both homogeneous and inhomogeneous FLE distributions. The results are further compared with those using the other two algorithms. When FLE distribution is anisotropic and homogeneous, the proposed TRE estimation algorithm’s performance is comparable with that of the first one. When FLE distribution is heterogeneous, proposed TRE estimation algorithm outperforms the other two classical algorithms in all test cases when ideal weighting scheme is adopted in solving two registrations. Possible clinical applications include the online estimation of surgical tool-tip tracking error with respect to a CRF in IGS.Graphical Abstract
This paper provides the target registration error model considering a coordinate reference frame in surgical navigation.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου